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Abstract

A new technique for calculating known goodness of fit
statistics for the Normal distribution is investigated. J
Samples are generated for a Normal (0,1) distribution. The
means of these samples are calculated and the samples are
doubled by reflecting sample data points about the individual
sample means. This reflection of data points about the mean
is the new technique for generating modified statistics.
After the sample is doubled, critical values are calculated
for these modified Kolmogorov-Smirnov, Anderson-Darling, and
Cramer-von Mises statistics. Critical values are for the

original sample sizes. An extensive power study is done to

test the power of the three new statistics' critical values
versus the power for the same three statistics, calculated
without reflection.

Powers of the new statistics are asymptotically

slightly higher than the powers of their non-reflected

counterparts, when the distribution tested is also symmetri-
cal. The powers of new statistics are substantially lower
when the distribution tested is non-symmetrical. The powers

are substantially higher for the modified statistics when

the continuous Uniform distribution is tested.
Complete tables of critical values for sample sizes

n =3 through n = 60 are included for the modified

Kolmogorov-Smirnov and Anderson-Darling statistics.

ix




A NEW GOODNESS OF FIT TEST FOR NORMALITY
WITH MEAN AND VARIANCE UNKNOWN

I. Introduction

This thesis is an investigation of a technique that
involves doubling samples by reflecting the sample data
points about their arithmetic mean before calculating good-
ness of fit statistics. Tables are to be generated for the
Kolmogorov-Smirnov, Anderson-Darling, and Cramer-von Mises
statistics using this technique. The usefulness of the
tables is demonstrated by a comprehensive power study.

General Comments About
Goodness of Fit

Goodness of Fit--Definition. Goodness of fit is

based on the idea that one can take a set of data and deter-
mine how well it corresponds (or fits) with some known dis-
tribution. "Goodness" refers to the quality of this fit.

Typical Non-parametric Test. In the area of non-

parametric statistics, most goodness of fit procedures attempt
to establish a statistical test of fit which relies on a vyes/
no decision rather than some measure of '"goodness." The
typical test uses a null hypothesis, HO: the data are from
some known continuous distribution. The alternative, HA, is
that the data are not from the hypothesized distribution.
Typically, the analyst is hoping to accept Ho. The purpose

1
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of these tests is to determine if the data are distributed 1
similarly enough to the hypothesized distribution to ascribe

the properties of the hypothesized distribution to the popu-

lation from which the data were taken. For example, if the

analyst has a group of data he thinks is distributed expo-

nentially, he could use one of the goodness of fit tests to

reach a statistical conclusion about whether or not the

population from which the data are drawn is exponential.

For the more common theoretical distributions, tables
of critical values have been derived for different goodness
of fit statistics. One of these tables has been derived by
Lilliefors for the Kolmogorov-Smirnov (K-S) statistic and
the normal distribution with the parameters estimated from

i the sample (Lilliefors, 1967). To use his tables, one would
calculate the statistic and compare it with the critical
value. If the calculated statistic were greater than the

critical value for the desired a-level (a is the probability

that HO is rejected when HO is true), Ho (that the data
‘ being tested are normally distributed) would be rejected
: (Lilliefors, 1967).
fﬁf Power Problems. Since the non-parametric test in-
t;i volves a yes/no decision rather than some proportional

measure of goodness, the power of a given statistic is very
{ important to the analyst. Power is the probability of re-

jecting HO when HA is, in fact, true (Mendenhall § Schaeffer, i

1973). The power of a given test provides some measure of
the quality of the statistical test itself. Thus, the power

2
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is a measure of the degree of usefulness of the goodness of
fit test. If the power is low, then one cannot state the
distribution of the data with as much confidence as if the
power had been high.

One of the problems with many of the goodness of fit
statistics is that, with smaller sample sizes (n = 10), they
are not very powerful. (Throughout this paper, the term
"powerful" will be used to mean "of or having relatively
high power.") This lack of power is evident for the normal
distribution, in particular, even against skewed distribu-
tions (Green § Hegazy, 1976; Stephens, 1974). None of the
statistics, for which Green and Hegazy reported powers, had
powers greater than 0.5 when sample size was ten {Green §
Hegazy, 1976).

Another problem with goodness of fit tests is that
they are more powerful against some distributions than they
are against others (Lilliefors, 1967; Stephens, 1974; Green
& Hezagy, 1976). In that sense, power study results are
again useful to the analyst. For example, suppose HO is
that some sample of data is drawn from a normal population.

Suppose the calculated goodness of fit test statistic is

.087. Suppose the critical value for that statistic is .079.

The test statistic value is greater than the critical value,
SO HO would be rejected. In that case, the analyst could
refer to a power study and perhaps find that for this parti-
cular statistic, the power versus the exponential is .97.
He could then state with high confidence that the data is

3
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i
not exponential, but normal. From another power study, he 1
might also find that the power versus the double exponential !
is .36. Thus, he could not have as much confidence in a
statement that the data are not from a double exponential, i
but from a normal population.

This research effort is an investigation of a new
method that will, hopefully, provide more powerful goodness
of fit tests for three of the common goodness of fit statis-
tics. The new method is the doubling of samples about the
sample mean before calculating the statistic. This technique
is applied to calculating critical values for the normal
distribution.

Three Test Statistics. The three test statistics

being used have been tested for their power when calculated
for the normal distribution (Stephens, 1974; Green § Hegazy, i
1976; Lilliefors, 1967). These previous-tests suggest a
methodology for the power studies done using the technique
being investigated here. The statistiés which will be used
are the Kolmogorov-Smirnov (K-S) statistic (Massey, 1951),
the Anderson-Darling (A-D) statistic (Anderson § Darling,
1954), and the Cramer-von Mises (CVM) statistic (Anderson

§ Darling, 1954).

The statistics are discussed in greater detail in

Chapter II, the background chapter of this report. It is

important to note that all statistics in this research are
calculated after estimating the mean and variance from the

sample data.




Primary Research Issue

The new statistical technique studied in this re-
search is motivated by the work of Schuster (1973; 1975).
Schuster suggests that samples of symmetrical distributions
can be reflected about the parameter of symmetry to generate

a new sample with identical parameters. He uses this con-

cept to develop a new statistic that uses two samples, the
original one and the reflected one (Schuster, 1973). The
technique suggested by this author results in a different
statistic than Schuster's. However, the statistics prob-
ably are not totally dissimilar. Both Schuster's and this
author's techniques can be expected to have similar charac-
teristics because they both use reflection.

The New Technique. The logic of the technique pro-

posed by the author follows. If a sample of some size, n
(e.g., n = 10), is taken from a normal population, the actual
number of points used to calculate the test statistic can be
doubled about the arithmetic mean of the sample data. In
other words, rather than calculating the critical values for
the normal distribution at n = 10 with ten data points,
twenty actual points will be used. The technique is demon-
strated with an example in Chapter II.

More Restrictive Critical Values. It is felt that

the use of this reflection technique will result in the gen-
eration of more restrictive critical values. Because the
critical values supposedly will be more restrictive, it is
possible that the probability of rejecting HO when HA is

S
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true will increase. In other words, the possibility that

the power will be greater when data points are reflected
about their mean will be investigated.

General Research Hypothesis. The general hypothesis

being tsed to guide this research can be stated as follows:
Hypothesis: For the normal distribution, the K-S, A-D ’
and CVM statistics, modified by calculation after ‘
doubling the sample by reflecting data points about the
sample mean, provide more powerful tests of goodness of
fit than do the same statistics calculated without
<3 reflection.

While it is hypothesized that generally more power-
ful statistics will result from reflection, some implica-
tions from Schuster's work should be considered since he
also used reflection. First, Schuster proved that for his
statistic better results could only be expected when alter-
native distributions are also symmetric (Schuster, 1973).
One would, thus, not be surprised to find higher powers only
versus symmetrical distributions for the new statistic.
Second, Schuster only obtained better results asymptotically
when the parameters were estimated from the sample. 1In
¥ other words, his statistic was "better" only for larger

sample sizes (Schuster, 1973). It should not be surprising

if this is also the case for the new technique.

Yom sy

Primary Purpose. The primary purpose of this thesis

§

is to test the above hypothesis and to generate tables of
critical values for the three previously mentioned statistics, ; ]

6




modified by doubling the sample by reflection. While the
basic hypothesis being tested is presented in the previous
paragraph, several other techniques are to be tested before
developing the computer programs for generation of critical
values. These are briefly described in the following para-
graphs. More detailed discussions are presented in Chapter

II.

Bootstrap Technigue

Continuous vs. Discrete. Prior critical value tables

have been determined by calculating and ordering statistics
for a large number of random samples from the test distribu-
tion. If 1000 statistics are calculated, the critical value
for ¢ = .05 is the 950th largest order statistic. The pro-
cess uses discrete values to determine critical values for
continuous distributions.

The bootstrap technique developed by Efron (1979)
and recently demonstrated by Johnston (1980) is a method for
representing these order statistics on a continuous spectrum.
This is done by plotting the values of the order statistics
and representing the spaces between them as piecewise linear
functions (Efron, 1979; Johnston, 1980).

Interpolation. If the order statistics are plotted

versus a plotting position that would represent each of the
order statistics on a scale between zero and one, it is pos-
sible to interpolate for the desired percentile and, there-

fore, extract a more accurate value. It is also possible




that by using this technique, cost savings can be realized,
since fewer random deviates may have to be generated in order

to get consistent critical values at the desired o levels.

Plotting Positions

As mentioned above, the bootstrap technique requires
the use of some plotting position to scale the order statis-
tics between zero and one. Three different plotting posi-
tions are tested to see if there is any noticeable arithmetic
difference among them with large numbers (n > 100). The
three plotting positions tested are called the median rank,

a modified step rank, and the average of mean and mode ranks.
These three plotting positions are presented in detail in
Chapter 1II.

If the differences among the three plotting positions
are judged to be minor, only one of the positions will be
used. If there are major differences, then critical values
will be calculated using all three positions, and only the
most powerful results will be tabled.

The reason these positions are the ones being tested
is that they all have a desired symmetrical property. They
all provide symmetry in the following sense. Suppose one has
a graph with order statistics on the horizontal axis and
plotting position on the vertical axis. The vertical com-
ponent of the plot at the first order statistic is identical
to the quantity: one minus the vertical component at the

last order statistic.




Presentation of Research

The report on this thesis effort is presented in
five chapters. The first of these is this introduction.
Although the introduction is meant to be detailed enough for
a reader familiar with the research area, Chapter II is a
background chapter for the use of anyone interested in more
details about the techniques that have been discussed in the
introduction.

The methods used to examine the above techniques are
presented in Chapter III. The results of the research des-
cribed in Chapter III are presented in Chapter IV. Chapter
IV is a discussion of what happened. Tables of critical
values and results of power studies are located in this
chapter. The final chapter consists of conclusions and

recommendations.

Primary Purpose Reemphasized

The primary purpose of this research effort is to
test the technique of reflecting data points about the mean
and to create tables of critical values of the modified K-S,
A-D, and CVM statistics for the normal distribution using
that technique. Statistics are calculated using normalized

data with the mean and variance estimated from the sample.

i




II. Background

In the previous chapter, the basic concepts and

OO S S

techniques being studied in this thesis were presented.

This chapter explains some of those techniques in greater
detail. The chapter is divided into five sections. These
include some introductory comments; a presentation of the

three plotting positions to be examined; a discussion of the

R
.

K-S, A-D, and CVM statistics; further explanation of the
. bootstrap technique; an example of doubling samples by re-

flecting them about their means; and a summary.

Introductory Comments

Purpose. The purpose of this chapter is to present

more detailed discussions of some of the techniques mentioned

in Chapter I. This chapter is meant to be used as a refer- i
ence chapter. One familiar with the research area might not
need to read this chapter.

Format. The format is different than that used in

Chapter I. The sequence is now the order in which the ideas

are studied in the research. The following is a list of the

topics in the order of discussion:
a. Plotting positions

b. Three statistics

1. K-S (Kolmogorov-Smirnov)
’ 2. A-D (Anderson-Darling)
- 3. CVM (Cramer-von Mises)

10




c. Bootstrap technique

d. Doubling samples about the mean

Plotting Positions

Why? From Chapter I, the reason the plotting posi-
tion is necessary is to provide a vertical plot scaled between

zero and one. A vertical plot is required for each value of . 1

the order statistic represented on the horizontal axis.
Consider drawing n samples and calculating the same statistic
for each sample. The results would be a set of n statistics.
When ordered, the set is of n order statistics. Given the
set of order statistics, X(l), X(Z)’ X(S)’ ceey X(n), n is
the total number of statistics and i is the rank of a given
statistic, i = 1,2,3,...,n. For example, the rank of X(S)

is 3, or i = 3. Letting the value of order statistics be
represented by the horizontal axis and letting the vertical
axis be scaled between zero and one, the plotting positions
being tested allow the statistics to represent points on a
continuous function.

For example, let n = 10 samples. Suppose this re-

sulted in the ten statistic values in order (X(i)) listed
below. If one used the median rank (which is defined later)
as the vertical plotting position (Y(i))’ he would get the
list as shown on the next page. These values are plotted in

Fig. 1. 1If straight lines are drawn between the plotted

positions, a piecewise linear continuous function results.

In the research, each of the three plotting positions

11




‘ -
0.54-
+
.
¢ $ ¢ 2 + +—t } + } Lo
c.5 1.0
kﬂ
| Fig. 1. Example (Order Statistics vs Median Ranks)
' i X, . Median Rank (Y
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;| 1 .22 .067
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o 4 .67 .356
{ 5 .98 .452
6 1.02 .548
7 1.03 .644
8 1.08 .740
9 1.12 .837
10 1.13 .933
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will be examined to see if there is much difference among
them with values of n greater than 99.
The plotting positions are now described in detail.

Median Rank. The formula for median rank is as

follows:
. _1-0.3
median rank = n+0.3 (1)
where
i = rank of order statistic being plotted
n = total number of order statistics

The above formula is well known. From the example, suppose
the statistic being plotted is X(S) = 0.98. In this case,

where n = 10, the median rank is as follows:

. _5-0.3 _ 4.7 _
median rank = 10 T 104~ .452 (2)

+

A property of this plotting position worth noting
is that X(l) is the same distance from zero as X(n) is from
one. For instance at n = 10, the median rank for X(l) =

.067 and for X = ,933. Let the median rank of X(i) be

(10)
(1)°

.067. This is the desired symmetry discussed in Chapter I.

defined as Y Then, Y(l) - 0.0 = .067 and 1.0 - Y(lO)

Modified Step Rank. The second ranking procedure

discussed is the modified step rank. To understand this,
one must first know the step rank formula. The formula for

the step rank is also well known and is as follows:

i-1
n

step rank =

13
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The reason this formula needs to be modified is that it does
not have the same type of symmetry as that shown for the

median rank. For example, again let n = 10, then for i = 1,

the step rank is 0.0. For i = 10, the step rank is 0.9.
a If Y(i) is the step rank of X(i), then 1 - Y(lO) = 0.1 and
Y(l) - 0.0 = 0.0. The desired symmetry does not exist.

The desired symmetry can be obtained if the follow-

ing modification is made:

modified step rank = i—%—94§ (4)

Let Y(i) be the modified step rank of X(i)' Then, at n = 10,

= 0.5 and Y = 0.95, If follows that Y -0 =10.05

3
|
f Yo
L and 1 -
r

(10) (1)

Y(lO) = 0.05. Hence, the desired symmetry exists.

Average of Mode and Mean Ranks. The last plotting

position discussed uses the average of the mode and mean
ranks. The formulas for the mean and mode ranks are also
well known. Three ranks are presented below--the mode rank,

the mean rank, and the average of the two:

1

mean rank = —— (5)
mode rank = -1 (6)
n -1
i, i-1
average = 311;7—2;1 (7)
The mode and mean ranks do not have the desired symmetry

about zero and one. The average of those two ranks does.

Though not done here, this fact can be easily demonstrated.

14
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Three Statistics

This section is a presentation of the three statis-
tics being studied. All statistics will be discussed as
they apply to the normal distribution. The parameters of
the normal distribution, u and o, are unknown and will be
estimated for each sample by their maximum likelihood esti-

mators, X and S (Mendenhall § Scheaffer, 1973), where

n
z X;
_ i=1
x = 2 (7
n
T (xl—x)2
2 _ i=1
A (8
S = /gi (9)

Kolmogorov-Smirnov (K-S) Statistic. The common

symbol for the K-S statistic is D. The statistic is defined

(Massey; 1951; Lilliefors, 1967) as

D = max|F#*(x) - SN(x)l (10)

where
the sample data points are ordered,
F*(x) = normal CDF value of a given data point,
SN(x) = sample cumulative step function.
X and S are needed to find F*(x). Sy(x) has two values for
each ordered data point. These values are i/n and (i-1)/n,
where i is the rank of the ith ordered data point and n is
the sample size. The following is an example of how to

15
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calculate the K-S statistic for a given sample:

X Sy (%) F*(x) | F*(x) =Sy (x) |
0.2 0.000 0.125 0.1038 .1038 .0212
1.6 .125 .250 .2033 .0783 .0467
2.1 .250 .375 .2483 .0017 L1267 !
3.0 .375 .500 . 3446 .0304 .1554
4.8 .500 .625 .5596 .0596 .0654
5.0 .625 .750 .5871 .0379 .1629
8.1 .750 .875 .8790 .1290 .0040
9.6 .875 1.000 .9484 .0734 .0516
D = max|F*(x) - SN(x)I = ,1629
x=4.3, S =3,249, n =8
Anderson-Darling (A-D) Statistic. A common notation
for the A-D statistic is W2 (Anderson § Darling, 1954). Let
X(l) < X(Z) < X(S) < ... < X(n) be n observations from the
sample in order. Let u; = F(X(i)) = the normal CDF value

with X and S as estimators of u and o. Then, the A-D statis-

tic (Anderson § Darling, 1954) 1is

)

1 D
no- o= L (2j-D[1Inu, + In(l - u

. ; n-jep)] (D)

J

Letting A = 1n uj and B = 1In(1 - un-j+1)’ the following is

a numerical example using the same data points as the K-S

sample:
i x F(x) = uj un11f1 A B (2j-1) (A+B)
1 .1038 ) .9484 L2.265 -2.964 -~ 5.229
2 .2033 .8790 -1.593 -2.112 -11.115
3 .2483 .5871 -1.393 - .885 -11.390
4 .3446 .5596 -1.065 - .820 -13.195
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Joox R tuy gy A B (2j-1) (A+B)
5 4.8 .5596 .3446 . .S81  -.423 - 9.036
6 5.0 .5871 .2483 - .533  -.285 - 8.998
7 8.1 .8790 2033 - .129  -.227 - 4.628
8 9.6 .9484 .1038 - .053  -.110 - 2.445
T = -66.036
A-D = W2 = -8 - (1/8)(-66.036)
= -8 - 8.2545
= .2545

Cramer-von Mises (CVM) Statistic. The Cramer-von

Mises statistic (Anderson § Darling, 1954) is the third to

be studied in this research.

Let n = sample size,
u; = F(X(i)) = CDF value for normal distribution,

and

X(1) £ X(2) £ X(3) £ ---2X(;y be n observations in

order,
then

n .
. | _(23-1),2
L RN G, (12)

The following is a numerical example of calculation of the

CVM statistic:

i x F(X) = u, A= (2j-1)/2n (uj - A2
1 0.2 .1038 0625 .00171
2 1. .2033 .1875 .00025
3 2.1 .2483 .3125 .00412
4 .3446 .4375 .00863
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j x F(X) = u; A= (2j-1)/2n (uj - A)
5 4.8 .5596 .5625 .00001
6 5.0 .5871 .6875 .01008
7 8.1 .8790 .8125 .00442
8 .9484 .9375 .00012
r = .02934

CVM = 1/(12)(8) + .02934

.01042 + .02934

.03976

Bootstrap Technique

The bootstrap technique is used in this thesis as it
was demonstrated by Johnston (1980). One of the three plot-
ting positions tested will be used to represent the vertical
axis from zero to one. The value of the n test statistics
will be the horizontal components. Lines between the plots
will be interpolated, as was demonstrated in Fig. 1.

Extrapolation. In addition to the interpolations,

extrapolations are necessary to find values for X(O) and

th

X , where X,., is the i order statistic, i = 0,1,2,
(n+1) (1)

.,n,n+l., IfY represents the vertical rank determined

(1)
by one of the ranking procedures, Y(l) is greater than zero

and Y is less than one. Since a vertical scale from zero

(n)
to one is desirable in order to find critical values for any
level of significance between zero and one, values of X(O)
and X(n+1) must be found for Y(O) = 0 and Y(n+1) = 1,

To find X(O)’ the slope of the line between X(l)
and X(Z) is determined. That line is then extrapolated to

18




its intercept with the x-axis. If the intercept is greater

than or equal to zero, then X(O) equals the intercept value.
If the intercept is less than zero, then X(O) = 0. (Since
all of the statistics being tested yield non-negative values,
X(O) cannot be allowed to be negative.) The line between
X(O) and X(l) is, then, interpolated.

To find X , the same technique is used, except

(n+1)
negative values are not a problem. The line between x(n-l)

and X(n) is formed. That line is then extended to its inter-
cept with the line Y(i) = 1. The intercept value is the value
for X(n+1).

Figure 2 is a display of the above three situations.
Graph (a) depicts the situation where the x-intercept is less
than zero. In that case, the solid line is the line from
(X(O)’Y(O)) to (X(IJ’Y(I))' Graph (b) is the case in which
the x-intercept is greater than or equal to zero. Graph (c)
of Fig. 2 represents finding X(n+1).

Finding the Critical Value. To find a critical

value, all that is necessary, graphically, is to find 1 - «
on the vertical axis and extend along the line, Y(i) =1 - a,
to intercept the plotted function. The value of the horizon-
tal component is the critical value of the statistic at
significance level a.

Finding the critical value with a computer requires
finding the largest Y(i) that is less than 1 - a. Suppose
that Y(i) is the kth largest rank. Then, the standard linear
slope-intercept formula (y = mx + b) is used to find the

19
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critical value. The change in y can be found using Y(k) and

Y Similarly, the change in x can be found using X

(k+1)°

(k)
and X(k+1). (k)’Y(k))’

one can then let y equal 1 - a in order to find x, the 5

After finding the constant, b, at (X

critical value.

Example of Technique. As in the example in Fig. 1,

suppose ten samples are taken. Let the following numbers be

the ten statistics calculated:

i Modified Step Rank (Y(i)l Statistics (X(i)l
1 .05 .22
2 .15 .41
3 .25 .42
4 .35 .67
5 .45 .98
6 .55 1.02
7 .65 1.03
8 .75 1.08
9 .85 1.12
10 .95 1.13

In Fig. 3, the statistics are plotted versus their modified

step ranks. From the above list,

Y(l) = 0.05
fﬁ Y(Z) = 0.15
X(l) = 0.22
X(Z) = 0.41
i Using the equation, vy = mx + b,
f. Yoy ~ Yy _ .15 - .05
a m = slope = Y%E%_T_X%I% = 73 = 0.52
5 21
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“+—tt X (1)
0.5 1.0
X critical value (o = .10) X
(0) (11)

Fig 3. Example of Bootstrap Technique

b

Yy T ™
b= ,05 - (.52)(.22) = .065

~—

o= Q0 - b .065 ¢

al .
3

AtA GalL Lo v . a2
S /R
" el . . N . - *

Since x = .125 > 0, X(O) = x, Again, if x had been less than

g |

zero, X(O) would have been set equal to zero.

TR Pt

4 Extrapolation for X(ll) is performed the same way.
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Y(lO)’ Y(g), X(IO)’ and X(g) are used to find the slope. The
constant, b, is calculated at either (X(lo)’Y(lo)) or at
(X(g),Y(g)). Then, X(ll) = [(1.0-b)/m], where m is the slope.

Now that the function is continuous (by extrapolation)
on the interval (0,1), the critical values can be found. At
a = .10, previous studies (Lilliefors, 1967; Green § Hegazy,
1976; Anderson § Darling, 1954; Massey, 1951) would have
picked 1.12, or the ninth largest statistic as the critical
value. Using the bootstrap method, the value is 1.125 (if
modified step ranks are used).

To get the critical value using the bootstrap tech-

nique, the largest Y(i) less than or equal to .90 is found.

In this case, this is Y(g) = ,85. Therefore, k = 9 and
k +1 = 10. Then,

m= @) " Yoy . .95 - .85 _ .10,
X(10) - Xeoy ~ L-15 - 1.1Z = 701
b= .85 - (10)(1.12) = .85 - 11.2 = -10.35

and

.90 - (-10.35)

10 = 1.125

critical value =

As one can see, the critical value will vary with
statistics calculated for random samples. One of the issues
of this research is the number of samples needed to get con-

sistent results.

Doubling Samples About the Mean

The following is a description of the technique of
doubling samples about their means. First, a sample of

23




Fig 4. Doubling Samples About the Mean

random deviates is collected. Second, the arithmetic mean h

is calculated.

The third step has several sub-steps. Let i = 1,2,
3,...,n, and n be the number of random deviates in a sample.
Then, the new deviate (created by reflection about the mean)
is x .. = 2x - xi. Looking at Fig. 4, suppose x; = 2.4
and the mean of all the xifs is x = 3.4. Then, Xoai
= 2(3.4) - 2.4 = 4.4. Notice that both points are equidis-
tant from the mean. The mean from the newly created sample
is the same as the original one.

Example. An example is presented in Table I. The
first column is the five data points in the original sample.
The second column is of the left-hand sides of five equations,
representing 2x - X5 for each data point. The third
column is the reflected data point.

24




TABLE I

Reflection of Data Points About the Mean

Data Points 2x - x, Reflected Data ;
(n =5) 1 Point ,
q ,
0.2 2(3.4)- 0.2 = 6.6
1.6 2(3.4)- 1.6 = 5.2
2.1 2(3.4)- 2.1 = 4.7
4 5.0 2(3.4)- 5.0 = 1.8
p 8.1 2(3.4)- 8.1 = -1.3 1
E Before reflection: X = 3.4 '
g After reflection: X = 3.4

Summary

E This chapter is a set of detailed discussions of

| techniques referred to in Chapter I. The techniques discussed
are plotting positions (ranking techniques), the three statis-
tics studied, the bootstrap technique, and the procedure of

doubling samples atout their arithmetic mean. Specific

references will be made to this chapter in the following

chapter on procedure.
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III. Procedure

The techniques to be used in the experimental pro-
cedure have been presented in detail in Chapters I and II.
This chapter is a discussion of how those techniques are to
be applied. Since all of the data are generated using
Monte Carlo simulation of pseudo-random deviates, this is
essentially a chapter about how the previously discussed
techniques are combined into computer programs to generate
and manipulate Monte Carlo data for testing the research
hypothesis presented in Chapter I.

This chapter has four major sections. The first is
about how the three plotting positions are to be tested.
The second concerns the calculation of statistics and their
critical values. The third section is a discussion of the
generation of tables of critical values. In the last sec-

tion, the construction of the power study is presented.

Plotting Positions

The purpose of the first phase of research is to
compare three plotting positions. The search is for meaning-
ful differences among the median rank (M), modified step rank
(MS), and the average of the mean and mode ranks (AMM) at
various values of n (n is the number of statistics to be
plotted). If there are meaningful arithmetic differences,
all three will be used. If no meaningful differences exist,
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only the modified step will be used for simplicity. ''Meaning-
ful” is an intentionally loose term. The researcher cannot
judge whether the differences are important, or "meaningful",
until he has seen what the differences actually are. The
plotting positions, themselves, are thoroughly discussed in
Chapter II.

The Computer Program. Since visual comparisons of

plotting positions for each value of i (i = 1,2,3,...,n) are

desired, the comparison is done via computer. The program &

used is simple and is included in Appendix A. The program
has the following three major steps:
1. For some n, find the value for each plotting
position at every i, i = 1,2,3,...,n
2. Find the differences among the three plotting
positions at each value of i.
3. Print out for every value of i:
a. the values of the three positions

b. the absolute value of:

1. M - MS
2. M- AMM
3. AMM - MS

The program is run for n = 100, n = 150, and n = 300 statistics.

Calculation of Statistics and
Critical Values

The calculation of statistics for random samples is
at the heart of this research effort. All programs that are
used calculate statistics. All either calculate or use
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previously calculated critical values. The point is that

1
4
i
1
4
i
]
!

all the programs use much of the same flow and code to
accomplish these calculations.
The four basic steps used in the programs include
the following: ;
1. Calculating statistics (using different sub-

routines for each statistic),

2. Storing the statistics in a vector array,

3. Ordering the elements of that array from

o

1 smallest to largest, and
4. Calculating critical values using the bootstrap
method that was discussed in Chapter II.

Subprogram for Calculating Statistics. The logic

for that portion of each program that deals with calculating

the statistic is shown in Fig. 5. The letter on the right-

hand side of each block is the block identifier.

Subprogram for Finding Critical Values. The logic

for that portion of each program that is used to find the
critical values is shown in Fig. 6.

Testing the Program. The program can be tested for

validity, since tables of critical values for the straight-

forward calculation of the Kolmogorow-Smirnov (K-S) statis-

tic are readily available. With 5000 samples, the program
can be run without estimating the parameters, i.e., assuming ?
u =0 and ¢ = 1. These critical values can be compared with |
those obtained by Massey (Massey, 1951, p. 70). Once this
is done, the program is modified as shown in Fig. 7. The
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Generate ordered random
deviates from Normal (0,1)

¥

Find CDF value for
each data point

¥

Calculate K-S

statistic ¢
+
Store statistic in a 0

vector array of length n

Reiterate the above
flow n times

Fig 5. Subprogram for Calculating Statistics
Order the Array A
of statistics
¥
Extrapolate for the 0th B
and n+lst order statistics
+
Find critical value C
using bootstrap
Fig 6. Subprogram for Finding Critical Values




Block A of
Figure 5

I ¥

Calculate X and S
for sample

¥

Calculate

for each data point (xi)

+

Replace original data

point (x;) with z, A-3

+

Block B of
Figure 5

Fig 7. Program Logic for Standardizing
the Data

three logic blocks in Fig. 7 fit between blocks A and B of

PPUSE

Fig. 5. With this modification, the program will generate

- aza

critical values after estimating the parameters of the nor-

i

mal by X and S and standardizing the data. When this is done
with 5000 samples, the results can be compared with those of

Lilliefors (Lilliefors, 1967, p. 400).
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The Number of Samples to Use. The next research issue

to investigate is if the bootstrap method will allow the use
of considerably less than 5000 order statistics to calculate
the critical values.

To do this test, critical values are calculated for
the K-S statistic using 150, 300, 500, 1000, and 5000 samples.
All samples are generated by Monte Carlo simulation and using
different seeds. 1f the values are essentially the same at
500, 1000, and 5000 samples, then critical values for tables
can be calculated using only 500 samples. Similarly, if the
values are the same for 300, 500, 1000, and 5000, then 300
samples would be enough. The point is that if the researcher
wants to use 300 samples to generate tables of critical
values, the critical values at 300 must be the same as those
calculated using 500, 1000, and 5000. Five thousand samples
is the number of samples commonly used in the literature to
generate tables. The hope is that fewer will be needed by
using the bootstrap technique. Whatever number of samples are
used, however, must be consistent with the results at 5000
samples to be acceptable.

In addition to this vertical comparison, cross com-
parison with critical values found using different initial
seeds to the random number generator are necessary. In one
vertical comparison, the values might be essentially the same
at 500, 1000, and 5000 samples. However, using a different
seed, this may not hold true. The only consistency might be
at 1000 and 5000. The critical values must be consistent
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for a given number of samples--no matter what seed is used--

if that number of samples is going to be used to construct
valid, accurate tables.

The program used to test this issue is included in
Appendix D.

Program Subunits (Author's). Several subroutines

have been written by the author for use in the various pro-
grams. The code for these subroutines is included in Ap-
pendix C. The purposes and names of these subroutines are
discussed in the following paragraphs.
Three subroutines are used in the calculation of the
K-S statistics. These are CVALS, LILDIF, and DSTAT. ANDAR
is used to calculate the Anderson-Darling statistics, while
CVM is used to calculate the Cramer-von Mises statistics.
In addition to the five above, four subroutines are
used in a variety of programs. Their names and uses are
listed below:
ESTPAR - Takes an input vector array of data points
(xi) and calculates x and S. It then
standardizes the data via the trénsforma-

tion,

and outputs a vector array of standardized
data points (zi).
DUBSAM - Takes an input vector array of length n,

calculates the mean of the vector elements,
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reflects vector elements about the mean,
and generates an output array of length 2n,
which includes the original array elements
plus their reflections.

XPOLAT - Used as part of the bootstrap technique.
Input is a vector array of no order statis-

tics. It extrapolates for X and X

(n+l)
Output is an array of length, n + 2.

(0)°

CVALUE - Input is an array of order statistics.
Output is a set of critical values based on

the elements of that array.

Program Subunits (IMSL). 1In addition to the author's é
own subroutines, several subroutines from the International I
Mathematical and Statistics Library (IMSL) are used. These
include the following:
GGNO - Generates an array of ordered N(0,1) random
deviates.
MDNOR - For an input data point, outputs the CDF
value of the standard normal distribution.
VSRTA - Orders the elements of an input array from

smallest to largest.

Generation of Tables of

Critical Values

Once the number of samples needed to get accurate
critical values has been determined, the next step in the
research is the generation of critical value tables. The
tables to be generated are for the Kolmogorov-Smirnov (K-S),
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Anderson-Darling (A-D), and Cramer-von Mises (CVM) statistics

for sample sizes n = 3 through n = 60. The critical values
are for modified statistics--statistics calculated after
sample data points are reflected about the sample mean.

At this point the researcher is faced with a choice.
The choice is between using a complex program that produces
an entire table of critical values or using a simple program
and reiterating it for each sample size. The second option
is chosen despite the fact that it forces manual construction
of the tables. This disadvantage is outweighed by the much
more rapid computer turnaround for the simple program.

As a result of using the simpler methodology, each
final table requires the submission of 171 programs-- 57 for
K-S, 57 for A-D, and 57 for CVM. These individual programs
are similar to the one described in the previous sections of
this chapter. The only change is that in these programs,
the samples are doubled by reflection about the sample means.
This is done by subroutine DUBSAM after generating the ran-
dom deviates and before standardizing the data. This step

occurs between logic block A of Fig. 5 and logic block A-1

of Fig. 7. The program will generate critical values for j
o« = .20, .15, .10, .05, and .01 for a given value of n. )
In addition to the above programs, twelve more are
required to generate critical values for use in the power
study. Since the powers are to be compared at n = 10, 25,
40, and 60, critical values at o = .20, .15, .10, .05, and
.01 must be determined without reflecting the sample. This
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is done for each of the three statistics at each of the above

four values of n.

Power Study

The purpose of the power study is to test the research
hypothesis that the technique of reflecting data points about
their means will result in goodness of fit tests with higher
powers thanones which do not use that technique.

The power study is done at n = 10, n = 25, n = 40,
and n = 60. The reasons for using these sample sizes are
that 1) power comparisons will be available for both small

and large sample sizes, and 2) trends in the behavior of the

- statistics' critical values can be observed.

The logic of the power study program follows. First,
a sample is drawn from some distribution other than the normal.
Second, the test statistic is calculated. Third, a compari-
son is made between the test statistic and the critical value
for each level of a. If the test statistic is greater than
the critical value, normality is rejected. The first three
steps are then reiterated S000 times. Each rejection is
counted. The power at each a-level is computed by dividing
the number of rejections by 5000. The results are then printed
out.

Six statistics are calculated for each value of n.
These statistics are the following:

1. K-S

2. K-S reflected

35
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3 A-D
4. A-D reflected
5. CVH

6. CVM reflected

As with the generation of tables, the choice is made
here to submit simple programs and then construct tables
manually. Thus, to find the power of the statistics for the
normal against some other distribution, four programs are
required--one for each value of n. So, if seeking the power
against five distributions, twenty programs are required.
Different seeds are used for each run.

Flow of Typical Program. Figure 8 is a display of

the logic of the typical program used in the power study.
The flow in Fig. 8 is for finding the power of each of the
six statistics against the exponential distribution at sample

size, n = 10. The code for this particular program is in-

cluded in Appendix F as an example of the FORTRAN code used.

The Distributions Used. The distributions used in

this power study are the exponential, Cauchy, chi-squared
with four degrees of freedom, the chi-squared with one degree
of freedom, and the double exponential. The exponential
random deviates are generated by the IMSL subroutine, GGEXN.
The Cauchy deviates are generated by GGCAY (IMSL), and the
chi-squared ones are generated by GGCHS (IMSL).

The IMSL does not include a subroutine for the double
exponential. Therefore, double exponential deviates are
generated using the following technique. Continuous uniform

36




Generate sample of 10
exponential random deviates

¥

Calculate the six
statistics

¥

Compare with their corresponding
critical values (reject if
test statistic > critical value)

+

Count rejections at
each a- level

¥

Reiterate steps A
through D 5000 times

+

Calculate the powers
at each a- level

+

Print the number of
rejections and the powers

{ of the

Fig 8. Flow for Typical Power Study Program

random deviates, Ui’ are generated by GGUBS (IMSL).

double exponential [F(yi)] is as follows:

<0
F(yi) = 1 1 -y

The CDF




>,
Therefore., if Ui < 0.5, then Yy = ln(ZUi), and
if U.1 > 0.5, then Y; = -1n(2 - ZUi)'
Thus, Yis i=1,2,...n, is a pseudo-random sample from the
double exponential distribution (Littel, McClave, and Offen,
: 1979, p. 265).
Programs in the Appendices i

An example of each type of program described in this
chapter is included as an appendix. The following is a list 1
of the appendices and the type of program or information
included in each:
Appendix A: COMPAR - the program for comparing
plotting positions.

Appendix B: Results of COMPAR - the results of

program, COMPAR, when 150 points are

to be plotted.
Appendix C: Subroutines - the computer code for

the subroutines written by the author.
Appendix D: COMLIL - the program used to validate

the logic used in finding critical values
! for the Kolmogorov-Smirnov statistic.

This program is used to determine the

-3 ) number of samples to use for the boot-
£ strap technique.
‘ Appendix E: TABLE2 - the program for finding criti-

cal values of the modified Anderson-

Darling statistic.
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Appendix F: POWERS - the program for finding the cri-
tical values of the six statistics at
sample size, n = 10, when the Cauchy is
the alternative distribution.

All programs are written in FORTRAN V and are run on the
Control Data Systems CDC 6600 computer which is operated by

the Aeronautical Systems Division at Wright-Patterson AFB, Ohio.

Aot

Summary

This chapter is a presentation of the basic methodo-
logy used in the research. Flow diagrams are used to portray
typical logic used in the different computer programs. The
presentation includes discussions of 1) how plotting posi-

tions are compared, 2) how statistics and critical values

are calculated, 3) how the tables of critical values are
generated, and 4) how the power study was done.
The next chapter is a presentation of the results of i

this research.
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IV. Results

This chapter is a presentation of the results of the
research procedures described in the previous chapter. First

to be discussed are the results of testing the three plotting

positions. The section on plotting positions is followed by
a section which rerorts the appropriate number of samples to

use when finding the critical values. This is followed by

the two major sections of the chapter--ones in which the
tables of critical values and the results of the power study

are presented. The chapter ends with a brief summary.

Test of Plotting Positions

The purpose of this testing of the plotting positions
was to determine if there was any noticeable difference among
the three. The results of the program using n = 150 (where
n is the number of points to be plotted) are included in
Appendix B.

With n = 150, the average of the mean and mode ranks
(AMM) 1is essentially the same as the modified step rank (MS).
5

The largest difference at n = 150 is 2.0 x 10~ At n = 300,

the maximum difference is 1 x 10'5.
In contrast, the differences between the median rank
(M) and the other two is larger (by a factor of 102) at
n = 150. The largest difference between AMM and M is
3

1.34 x 10~ The largest difference between MS and M is
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1.32 x 1073, The difference is halved when n = 300. ﬁ

Although the median rank is different than the other
two plotting positions, the difference is still quite small.

This difference becomes very, very small as the number of

points to plot increases. Because the differences become
slight as n increases, the decision was made to use the

modified step rank in all calculations of critical values.

Test of the Program

As a test, the program for generating critical values
was run with 5000 samples of sizes n = 10, n = 20, and n =
30. As stated in Chapter III, this was done for the Kolmogorov-
Smirnov statistic so that the results could be compared with
tables previously published.

The program which carried the assumption of normality,
with py = 0 and o = 1, generated critical values which were
the same as Massey's (Massey, 1951). When the parameters of
the normal distribution were estimated by X and S, the results
were similar to those obtained by Lilliefors (Lilliefors, 1967).

The program is, thus, valid.

The Number of Samples Used

The program for testing the consisten~y of critical
values was run four times with a different seed each time.
The program generated critical values using 150, 300, 500,
1000, and 5000 samples. The only number of samples that
yielded consistent results through all four programs at all
levels of a was 5000. If o = .01 had not been desired for
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the critical value tables, 1000 samples appeared to generate
critical values similar enough to each other to be used at
the other levels of a. However, since a = .01 was desired,
5000 samples were generated for each sample size from n = 3

‘ ton = 60 for each statistic.

Tables of Critical Values

Only two complete tables of critical values are pre-
sented. Table II is a list of critical values for the
Kolmogorov-Smirnov statistic when the sample is reflected
about the mean. Table III is the same information for the
modified Anderson-Darling statistic.

Only a partial table is presented for the Cramer-von
Mises statistic. Table generation was stopped because the
preliminary results of the power study were not promising
for any of the statistics. Upon completion of the power
study, it was found that the modified CVM statistic was
rarely better than the modified A-D statistic. The decision
was made to not waste computer resources generating a table of
apparently minimal utility.

For the power study, however, critical values of the

i Cramer-von Mises statistic were needed for n = 10, n = 25,
ﬁﬁi , n =40, and n = 60. A list of the critical values at these
[}

values of n is included as Table XV.

: { Use of the Tables. The following is the sequence of

steps necessary to use Tables II, III, and XV.

1. Collect data (sample size = n)
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2. Double the sample by reflection about the

mean (as described in Chapter III).

(92}

Standardize the data by the following transfor-

mation:
1 21 ) Xis- X
. where
X = the original data point g
z; = the standardized data point
F X = the sample mean ‘
i S = the sample standard deviation %

4. Calculate the statistic (see Chapter II).

5. Enter the table at the desired o-level and

(e &

appropriate value of n.

6. If the statistic is greater than the table value,

reject HO: the data are from a normal population.

The tables are located on subsequent pages.

Power Study

The power study was initially done versus five con-
tinuous distributions. A poswer study computer program was
also run using standard normal random deviates to validate

the study. The following is a list of the distributions used

and their corresponding tables:

1. Exponential (Table 1IV)
Cauchy (Table V)
Chi-squared with one degree of freedom (Table VI)
Chi-squared with four degrees of freedom (Table VII)
Double exponential (Table VIII)

wv NN
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Notes About the Tables. Several things should be

noted about the tables. The first note is explanatory. The
column headed '"calculation method" has two symbols listed.
The use of a single asterisk (*) indicates that the powers
in that row are for straightforward calculation of the sta-
tistic. The use of a double asterisk (**) indicates that
the powers in that row are for calculation of the statistic
after doubling the sample by reflection about the arithmetic
mean of the original sample.

The second item of note is that when the power is
greater when the reflection technique is used versus when
straightforward calculation is used, the power in the (*%*)
row is underlined.

The third point is that if one peruses Tables IV
through VIII, he will not find very many instances when the
doubled asterisked power is underlined. When it is under-
lined, it is for a symmetric distribution. In the case of
the Cauchy (Table V), one will notice: 1) that there is
minimal power improvement and 2) that improvement is with
large sample sizes. Most improvement is seen with the double
exponential, although still only with relatively large sample
sizes (Table VIII).

More Distributions. Because the improved power

appeared to be against symmetrical unimodal distributions,
it was decided to do additional power studies with the

logistic and Student's t with three degrees of freedom. A
study was done against the uniform just to see what would
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TABLE II

Critical Values of the Modified Kolmogorov-Smirnov
Statistic for the Normal Distribution
(Parameters Estimated from the Sample)

a-level

.20 .15 - .10 .05

3 .21133 .22155 .23119

1 4 .20749 .22981 .25958
b 5 .18600 .19626 .20955 .22566 .25164
6 .16981 .17746 .18786 .20432 .24933
7 .15883 .16973 .18258 .20179 .23340
8 .14923 .15861 .16924 .18591 .21416
9 .14279 .15057 .16106 .17807 .20894
10 .13452 .14278 .15309 .16858 .20295
11 .12990 .13734 .14731 .16308 .19580
12 .12535 .13225 .14163 .15788 .18677
13 .12046 .12708 .13649 .15045 .18021
14 .11654 .12344 .13171 .14519 .17046
15 .11272 .11924 .12818 .14087 .16812
16 .10863 .11483 .12334 .13621 .16301
17 .10721 .11287 .12029 .13293 .15758
18 .10334 .10929 .11811 .12912 .15234
19 .10152 .10724 .11447 .12630 .15069
20 .09938 .10500 .11187 .12217 .14629
21 .09732 .10321 .11096 .12284 .14452
22 .09416 .09965 .10693 .11735 .13980
23 .09337 .09849 .10548 .11523 .13596
24 .09005 .09543 .10246 .11350 .13664
25 .08818 .09328 .09931 .11045 .13294
26 .08777 .09302 .09986 .11062 .13309
27 .08608 .09120 .09780 .10760 .12760
28 .08498 .08957 .09583 .10612 .12750
29 .08254 .08753 .09404 .10381 .12427

30 .08144 .08635 .09190 .10019 .12038 {
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TABLE II, continued

JRPPOe

N a-level
n 20— .15 .10 .05 .01
31 .07965  .08393  .09045  .09957  .11916
, 32 | .07892  .08361  .08945  .09986  .11821
33 07734 .08170  .08806  .09756  .11564 !
34 | .07769  .08144  .08750  .09657  .11538 i
35 .07582  .08003  .08570  .09352  .11001
: 36 07436 .07874  .08381  .09204  .10847
37 .07389  .07808  .08367  .09170  .10814
38 | .07355  .07781  .08314  .09134  .10898
39 07137  .07534  .08076  .08934  .10689
10 .07103  .07530  .08069  .08895  .10428
41 .07001  .07409  .07905  .08811  .10513
42 .06954  .07352  .07928  .08722  .10372
43 | .06838  .07225  .07712  .08524  .10186
44 .06768  .07160  .07741  .08539  .10215 |
45 .06721  .07137  .07680  .08435  .10097
46 .06683  .07025  .07503  .08331  .09976
47 .06623  .06991  .07443  .08182  .09830
48 | .06511  .06904  .07465  .08186  .09744
R 49 .06374  .06781  .07295 ~~ .08038  .09496
50 .06363  .06690  .07226  .08051  .09377
i 51 | .06347  .06766  .07239  .08056  .09575
f 52 .06253  .06614  .07085  .07849  .09352
. 53 | .06205  .06534  .07006  .07751  .09103 |
2 54 .06153  .06488  .06965  .07704 09189 |
. 55 .06111  .06477  .06941  .07682  .09342
; 56 .06070  .06433 06902  .07631  .09068
- s7 | .05938  .06299  .06739  .07477  .08903
58 .05995  .06304  .06773  .07561  .09026
59 .05923  .06249  .06703  .07393  .08664
60 .05828  .06166  .06608  .07301  .08669
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TABLE III

Critical Values of the Modified Anderson-Darling
Statistic for the Normal Distribution
(Parameters Estimated from the Sample)

a-level
. n .20 .15 .10 .05 .01
3 .32197  .33708  .35211  .38220  .41027 |
4 .38954  .44834  .54657  .71621  1.01573 |
5 .41998  .47814  .55492  .65032  .74460
] 6 .40458  .44691  .50501  .62504  .95894
7 .41369  .46504  .54431  .67666  .94119
8 .42964  .47950  .55208  .69138  .94023
L 9 .43903  .49149  .70801  .70801 1.06640
10 .44203  .50275  .57780  .71245  1.05927
11 .44488  .50165  .59112  .73335  1.05248
12 .43843  .49746  .57663  .73101  1.08325
13 .04478  .49320  .57152  .72240  1.03260
14 .44722  .50810  .59214  .74576  1.07173 1
15 .45345  .51024  .59637  .74049  1.11475 ;
16 45242 .51498  .60171  .76214  1.14640 |
17 .46114  .51875  .60122  .76680  1.17257
- 18 .44973  .50160  .58093  .73484 1.12748
- 19 .44482  .51126  .59408  .75451  1.12149
1 20 .46305  .52665  .60590  .74583  1.05373
! 21 .45638  .51138  ,59375  .75196 1.08071
! 22 .45134  .50675  .58571  .74983  1.15273
k- 23 .46409  .53008  .62019  .76239 1.11597 |
.Si 24 .45368  .51731  .59381  .76619  1.07996 |
| 25 .45905  .52107  .61331  .76620 1.16808 5
e 26 .45657  .51742  .60062  .76192  1.14596 i
: 27 .46406  .52359  .61168  .75096  1.09041
‘ 28 .45768  .52019  .61730  .77880  1.17745
29 .45206  .51637  .60195  .74786  1.09862
30 .45293  .50558  .59092  .74476  1.10891
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TABLE III, continued

n a-level
.20 .15 .10 .05 .01
31 .45543 .51505 .60163  .74662 1.12114 |
32 .46263 .52015 .60162 .74479  1.13510 ?
, 33 46745 .53163 .63275 .77983  1.18250 ]
34 .46426 .52163 .60482 .76331  1.18852 j
35 .45729 .52079 .60769 .78193  1.21168 %
36 .45770 .51452 .60661 .76218  1.13499 ﬁ
37 .46177 .52033 61215  .76645 1.12664
38 .46404  .52357 .61461 76417  1.13875
39 .45700 .51812 .60254 .76641  1.17802
40 .46694 .53085 .61657  .77795  1.15300
a1 .45551  .51705 .61321 .76581  1.15760
2 .47180 .53721  .62564 .79213  1.24298 E
43 .46384  .51566 .60146 .75147  1.08809
a4 .47371 .54434 .64197 .80843  1.16483
45 .45976 .52153 61198  .77735  1.16194
46 .46785 .52882 .62071 .76338  1.21628
47 . 46490 .52129 .60793 77487  1.12421
48 .47582°  .53170 .61815  .77982  1.17364
= 49 .48063 .54400 .63094 .78997  1.19872
- 50 47218 .53726 .63046  .79205 1.16489
51 .47487  .53872 .62897  .78620  1.21199
= 52 .47148 .53079 .61907 .77005  1.12364
o 53 .47112 .54007  .63222 .79662  1.15710
. 54 .46084 51778  .61277 .75934  1.16752
xi 55 .47508  .53724 .63276 .77438  1.18181
L. i 56 .46565 .52901 .62268 78599  1.17529
">‘ 57 .45185  .51522 .60231  .78654 1.15393
- 58 .46904 .53178 .60645 .77380  1.13277
59 .47571  .54371 .62089  .76709  1.21326
60 .47305 .53179 .61611 .78893  1.19363
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TABLE IV

Powers for Testing HO: Population Is Normal,

When Population Is Exponential

Actual Population: Exponential

Statistic: Kolmogorov-Smirnov

Calculation method Powers at a-levels
n| * =straightforward
** =reflection -20 .15 -10 .05 .01

* .5710 .5120 .4318 .3208 .1612

*x .3670 .2914 .2206 .1388 .0390
* .8914 .8528 .7960 .6882 .4536
** .5992 .5262 .4474 .3216 .1532
* .9828 .9752 .9556 .9074 .7204
k% .7716 .7120 .6318 .5140 .3202
* .9994 .9984 .9960 .9838 .9312
** .9100 .8752 .8196 .7226 .5176

Statistic: Anderson-Darling

* .6688 .6120 .5282 .4120 .2356
**x .3782 .3104 .2396 .1668 .0616
* .9668 .9550 .9328 .8854
** .6656 .6036 .5152 .3932
* .9980 .9962 .9928 .9840
*x .8428 .7924 .7206 .6016
* 1.0000 1.0000 .9998 .9994
** .9412 .9172 .8798 .7898

Statistic: Cramer-von Mises

* .6306 .5764 .4944 3842
k*x .3502 .2818 .2134 .1318
* .9400 .9214 .8910 .8238
*% .5932 .5184 .4194 .2884
* .9950 .9906 .9838 .9656
k% .7432 .6738 .5810 .4528
* .9998 .9998 .9992 .9980
k% .8790 .8348 .7588 .6228
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TABLE V

Powers for Testing Hy: Population is Normal,
When Population Is Cauchy

Actual Population: Cauchy

Statistic: Kolmogorov-Smirnov

Calculation method Powers at a-levels

n * = gstraightforward A
#% = reflection .20 .15 .10 .05 .01 1

10 * .7306 .6998 .6532 .5884 .4660

10 % .6442 .6010 .5476 .4732 .3312

25 * .9558 .9452 .9298 .9000 .8385

25 % .9532 .9432 .9328 .9066 .8372

40 * .9918 .9888 .9862 .9766 .9498

40 % .9934 ,9922 .9898 .9838 .9682

60 ® .9994 .9990 .9986 .9970 .9926

60 % 1.0000 .9998 .9994 .9990 .9976

Statistic: Anderson-Darling

10 * .7452 .7132 .6688 .6082 .5010
10 * .6478 .6042 .5634 .5064 .3838
25 * .9662 .9610 .9524 .9358 .8870
25 kx .9618 .9538 .9414 .9246 .8708
, 40 * .9946 .9936 .9924 .9884 .9740
1 40 **x .9950 .9942 .9930 .9892 .9788
’ 60 * 1.0000 1.0000 .9998 .9994 .9976
60 k% 1.0000 1.0000 1.0000 .9998 .9990

Statistic: Cramer-von Mises

.

o
| 10 * .7436 .7090 .6658 .6104
.Lq , 10 * % .6456 .6088 .5582 .4878
48 25 * . .9644 .9578 .9468 .9294
o 25 | x# .9608 .9508 .9404 .9196
. 40 * .9950 .9936 .9922 .9874
{ 40 xH .9954 .9936 .9926 .9896
60 * 1.0000 .9998 .9998 .9992
60 xA 1.0000 1.0000 1.0000 .9996
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TABLE VI

Powers for Testing HO: Population Is Normal,
When Population Is xz (1 d.£.)

Actual Population: x° (1 d.f.)

Statistic: Kolmogorov-Smirnov

Calculation method Powers at a-levels |
*=straightforward
N | axopefiection .20 .15 .10 .05 .01 H
10 * .7850 .7366 .6608 .5420 .3430 j
10 k% .5762 .4994 .4046 .2854 .1262 f
25 * .9904 .9860 .9738 .9492 .8484 f
25 *x .9262 .9000 .8616 .7692 .5636 ;
40 * 1.0000 1.0000 .9996 .9990 .9864 j
40 *x .9896 .9844 .9726 .9490 .8570 i
60 * 1.0000 1.0000 1.0000 1.0000 .9998 }
60 kx .9996 .9990 .9984 .9950 .9775
Statistic: Anderson-Darling
10 * .8818 .8418 .7832 .6822 .4952
10 **x .5796 .5000 .4124 .2988 .1378
25 * .9994 ,9992 .9980 .9930 .9662
25 * .9314 .9066 .8600 .7654 .5228
40 * 1.0000 1.0000 1.0000 1.0000 .9994
40 *x .9918 .9862 .9746 .9430 .8238
‘ 60 * 1.0000 1.0000 1.0000 1.0000 1.0000
60 *% .9996 .9994 .9986 .9956 .9650

Statistic: Cramer-von Mises

.8512 .8122 .7444 .6476
.5436 .4754 .3780 .2508

.9978 .9964 .9922 .981i8
.9042 .8670 .7960 .6794

1.0000 1.0000 1.0000 .9998
.9798 .9690 .9434 .8926

1.0000 1.0000 1.0000 1.0000
.9990 .9984 .,9952 .9834
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TABLE VII

PO S

Powers for Testing HO: Population Is Normal,
When Population Is x° (4 d.f.)
Actual Population: )E{gg d.f.)
Statistic: Kolmogorov-Smirnov
Calculation method Powers at a-levels
n *=straightforward .20 .15 .10 .05 .01
**=reflection
10 * .4138 .3488 .2716 .1806 .0708
10 ** .2694 ,2064 .1406 .0740 .0112
25 * .6566 .5974 .5146 .3872 .1932
25 *x .3470 .2746 .2126 .1190 .0394
40 * .8340 .7910 .7248 .6036 .3548
40 k% .4106 .3362 .2582 .1612 .0652
60 * .9348 .9132 .8640 .7648 .5392
60 k% .4840 .4092 .3228 .2176 .0922
Statistic: Anderson-Darling
10 * .4768 .4020 .3068 .2162 .0980
10 % .2794 .2168 .1586 .0920 .0208
25 * .7948 .7520 .6884 .5804 .3412
25 ok .4296 .3616 .2764 .1792 .0634
40 * .9394 .9164 .8820 .8102 .6198
40 ke .5370 .4698 .3910 .2730 .1308
60 * .9888 .9824 .9682 .9320 .8075
60 *x .6458 .5812 .5006 .3720 .1894
Statistic: Cramer-von Mises
10 * .4398 .3696 .2870 .1976 .0784
10 ol .2630 .2060 .1438 .0774 .0160
25 * .7402 .6830 .6122 .4928
25 *x .3698 .3014 .2194 .1308
40 * .9086 .8758 .8244 .7288
40 k% .4200 .3536 .2758 .1830
60 * .9752 .9622 .9416 .8946
.5152 ,4384 .3506 .2330
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TABLE VIII

Powers for Testing HO: Population Is Normal,
When Population Is Double £xponential

Actual Population: Double Exponential

. Statistic: Kolmogorov-Smirnov

Calculation method Powers at a-levels
n *=straightforward
*r=reflection .20 .15 .10 .08 .01
’ 10 * .3604 .3030 ,2376 .1572 .0646
! 10 K% .2874 .2306 .1698 .1090 .0330
: 258 * .5084 .4402 .3618 ,2566 .1196
3 25 k* .5098 .4528 .3912 .2862 .1354
& 40 * .6376 .5858 .5114 .3852 .1820
40 k% .6702 .6150 .5440 .4312 .2616
60 A .7536 .7036 .6264 .4816 .2664
60 & .8088 .7646 .7046 .6004 .4020

Statistic: Anderson-Darling

10 * .3728 .3170 .2414 .1636 .0664
10 k% .2716 .2172 .1708 .1140 .0368
t 25 * .5566 .5136 .4418 .3440 .1742
25 k% .5358 .4792 .4094 .3258 .1724
40 * .6958 .6444 .5794 .4846 .2914
40 k% .7012 .6558 .5970 .4994 .3180
60 * .8072 .7627 .6978 .5932 .3784
60 k% .8316 .8016 .7558 .6724 .4776

Statistic: Cramer-von Mises

10 * .3696 .3130 .2416 .1592 .0546
10 ok .2770 .2252 .1708 .1104 .0428
25 * .5456 .4844 .4206 .3106 .1608
25 k .5364 .4838 ,4098 .3208 .1802
40 * .6896 .6408 .5688 .4544 2646
40 % .6878 .6476 .5890 .4986 .3210
60 * .8014 .7626 .7060 .6124 .3964
60 i .8390 .8018 .7494 .6678 .4726
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TABLE IX

Powers fo: Testing HO: Population Is Normal,
When Population is Logistic

Actual Population: Logistic
Statistic: Kolmogorov-Smirnov
Calculation method Powers at a-levels
n *=straightforward
x*=reflection .20 .15 .10 .05 .01

10 * .2486 .1990 .1418 .0874 .0252
10 % .2328 .1752 .1200 .0676 .0118
25 * L2670 .2150 .1494 .0876 .0244
25 kx L2774 ,2174 .1620 .0932 .0292
40 * .2958 .,2450 .1798 .1044 .0312
40 k% .3052 .2452 .1826 .1094 .0412
60 * .3306 .2736 .1990 .1130 .0342
60 k% .3542 ,2990 .2306 .1588 .0582

Statistic: Anderson-Darling
10 * .2498 ,1950 .1374 .0806 .0244
10 k% .2158 .1634 .1126 .0638 .0128
25 * .2970 .2562 .1982 .1274 .0434
25 k% .2866 .2318 .1660 .1058 .0370
40 * .3378 ,2750 .2208 .1536 .0556
40 k& .3264 .2734 .2156 .1412 .0600
60 * .3848 .3248 .2458 .1652 .0596
60 * % .3996 .3460 .2784 .1916 .0860

Statistic: Cramer-von Mises
10 * .2358 .1892 .1326 .0780 .0188
10 k% .2162 .1692 .1164 ,0602 .0172
25 * .2792 .2208 .1712 .1020 .0346
25 L .2858 .2284 .1622 .0980 .0388
40 * .3200 .2612 .2002 .1290
40 ol .3104 .2590 .1938 .1296
60 * .3552 .3048 .2384 ,1578
60 k% .3816 .3276 .2582 .1776

1
)
i
{
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TABLE X

Powers for Testing HO: Population is Normal,
When Population is Student's t (3 d.f.)

| Actual Population: Student's t (3 d.f.)

Statistic: Kolmogorov-Smirnov

Calculation method Powers at a-level ’
n *=straightforward
**=reflection .20 .15 .10 .05 .01
10 * .3610 .3066 .2500 .1726 .0838
10 *x .3028 .2498 .1836 .1174 .0378
- 25 * .5138 .4596 .3866 .3004 .1700
1 25 % .5232 .4646 .4066 .3200 .1750
1 40 * .6324 ,5892 ,5132 .4140 .2482 _
) 40 k& .6646 .6124 .5468 .4632 .3288 v
: ' 60 * .7512 .7024 .6356 .5282 .3632 ‘
E 60 *% .7992 .7628 .7162 .6354 .4752
| Statistic: Anderson-Darling
| 10 * .3778 .3214 .2612 .1884 .0990
: 10 % .3026 .2524 .1994 .1356 .0552
‘ 25 * .5734 .5366 .4798 .4006 .2530
| 25 k* .5636 .5124 .4482 .3712 .2374
" 40 * .7054 ,6634 .6148 .5352 .3788
. 40 *% .7124 .6734 .6226 .5446 .4076
60 * .8202 .7868 .7376 .6614 .5040
. 60 *% .8398 .8146 .7820 .7130 .5766
!
" Statistic: Cramer-von Mises
.3622 .3122 .2524 .1810 .0834
.3020 .2490 .1942 .1242 .0568
.5470 .4964 .4376 .3506 .2266
.5500 .4998 .4310 .3518 .2302
.6866 .6418 .5832 .4842 .3332
.6924 .6476 .5904 .5192 .3848
.7962 .7618 .7142 .6454 .4892
.8256 .7964 .7540 .6874 .5464
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Powers for Testing Ho:

TABLE XI

Population Is Normal,

When Population is Uniform (Continuous)

Actual Population:

Uniform (Continuous)

Statistic: Kolmogorov-Smirnov
Calculation method Powers at a-level
n *=straightforward
*t=reflection .20 .15 .10 .05 .01
10 x .2688 .2112 .1420 .0724 .0128
10 ke .3418 .2696 .1946 .1116 .0250
* .3704 .2998 .2156 .1172 .0294
** .5718 .4900 .4078 .2596 .0856
* .5284 .4482 .3424 .1978 .0454
*% .7204 .6546 .5542 ,4080 .1886
* .6800 .6012 .4918 .3038 .0952
*% .8790 .8328 .7586 .6162
Statistic: Anderson-Darling
* .3160 .2428 .1596 .0768
k% .3584 .2828 .2226 .1386
* .5570 .4890 .3866 .2500
*% .6814 .6122 .5190 .3746
* .7572 .6874 ,5910 .4414
% .8636 .8182 .7506 .6158
* .9178 .8816 .8038 .6670
ks .9708 .9540 .9218 .8478
: A\
Statistic: Cramer-von Mises
: \
* .2880 .2194 ,1450 .0690
ekl .3338 .2798 .2098 .1216
* .4724 .3856 ,2890 .1736
% .6244 ,5530 .4528 .3182
* .6602 .5806 .4754 ,3120
k% .7842 .7226 .6434 ,5120
* .8194 .7732 .6950 .5416
ke .9262 .8960 .8454 ,7334
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TABLE XII

Critical Values Used in the Power Study for
the Unmodified Kolmogorov-Smirnov Statistic

o-level
n .20 .15 .10 .05 .01
10 .21595 .22547 .23857 .25841 .29564
25 .14388 .15070 .15990 .17370 .19991
40 .11442 .11937 .12631 .13792 .16200
60 .09443 .09871 .10489 .11506 .13275
TABLE XIII
Critical Values Used in the Power Study for
the Unmodified Anderson-Darling Statistic
o-level
n .20 .15 .10 .05 .01
10 .46452 .51170 .58377 .68950 .90866
25 .49224 .53019 .59532 .70333 .98629
40 .50112 .55038 .61634 .72494 . 99653
60 .50662 .55866 .63651 .76620 1.06946
TABLE XIV
Critical Values Used in the Power Study for
the Unmodified Cramer-von Mises Statistic
o-level
n .20 .15 .10 .05 .01
10 .07821 .08720 .10042 .12058 .17031
25 .08110 .09046 .10300 .12522 .17525
40 .08059 .08940 .10275 .12604 .17781
60 .08221 .09052 .10270 12414 17726
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TABLE XV

Critical Values Used in the Power Study for
the Modified Cramer-von Mises Statistic

n .20 .15 a:igvel .05 .01
10 .07142 .08137 .09636 .12401 .18158
25 .07181 .08269 .09921 .12744 .19170
40 .07477 .08630 .10250 .12890 .19513
60 .07370 .08433 .10076 .13065 .20545

happen.
The results using these three additional distribu-
tions are included in Tables IX, X, and XI, respectively.

Critical Values Used. The critical values used in

the power study for the modified K-S and A-D statistics are
the ones in Tabl:s II and III at n = 10, 25, 40, and 60.

The critical values for the CVM statistic modified by reflec-
tion are in Table XV.

The critical values used for the straightforward
calculation of the statistics are in Tables XII, XIII, and
XIV. Tables XII through XV were all generated using 5000
samples. This last set of tables is included for informa-
tional purposes only. The author does not claim that inter-

polation can be done for sample sizes not shown.

Summarz

This chapter is essentially a collection of tables
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with explanatory comments. The tables display the important
results of this research effort. The next chapter is a short
discussion of the conclusions to be drawn from these results

and of any implications for further research.
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V. Conclusions and Recommendations

This chapter is a presentation of the author's con-
clusions concerning his research and his recommendations for
further research with the modified statistics. First, a ]
review of Schuster's (1973; 1975) ideas which apply here
will be presented along with a restatement of the general
research hypothesis. Second, conclusions about how the
actual results compare with the hypothesized results are
presented. In the same section, conclusions are stated con-
cerning the 'best" plotting position and the '"best'" number
of samples to use for the bootstrap technique of determining

| critical values.

Review
The purpose of this research has been to test the
ey technique of reflecting data points about the arithmetic

mean before calculating previously developed goodness of fit
test statistics. This concept was motivated by work done by
! Schuster (1973; 1975). The idea that samples can be reflected
f{{ about the mean is his. He used the concept to develop a dif-
§ ferent statistic than the ones which are presented and studied
. in this paper. Schuster, however, predicted that the reflec-
tion concept would be helpful when testing within the set of
symmetrical distributions (Schuster, 1973). He also showed
that when the parameters are unknown and when testing within
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the set of symmetrical distributions, the statistic he

developed would be asymptotically better than statistics
calculated without incorporating some kind of reflection
technique (Schuster, 1975). Schuster further demonstrated
that his statistic would not show improvement when testing

a symmetrical versus a non-symmetrical distribution (Schuster,
1973).

Since the statistics studied here are also based upon
the same type of reflection, it was expected that using the
normal as the hypothesized distribution, 1) improved power
would be evident when deviates from other symmetrical distri-
butions were tested, 2) when improved power was evident, it
would be more evident as sample size increased (i.e.,
asymptotically better), and 3) no improvement would be evi-
dent in powers generated against the non-symmetric distribu-
tions.

The general hypothesis used to guide the research
was stated in Chapter I:

For the normal distribution, the K-S, A-D, and CVM
statistics, modified by calculation after doubling
the sample by reflecting data points about the sample
mean, provide more powerful tests of goodness of fit
than do the same statistics calculated without re-

flection.

Conclusions

Primary Research. Although the three new statistics
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tested in this thesis are not identical to Schuster's, the

predictions made based upon his work are valid. The powers
calculated for symmetrical alternatives to the normal are
asymptotically greater for the three modified statistics
than for the corresponding unmodified statistics. Also, the
powers for the three new statistics, when calculated for
non-symmetrical alternatives to the normal, are lower than
for their unmodified counterparts. This can be seen in the
power study tables of Chapter IV.

The general research hypothesis is only partially
valid. The modified statistics are not universally of
higher power than their unmodified counterparts. Higher
powers are evident only for larger sample sizes (n > 25 in
some instances, n > 40 in most instances) when continuous
symmetrical alternatives are tested. The only alternative
distribution for which the modified statistics display
higher power for all sample sizes is the continuous uniform.
Thus, the research hypothesis is false with (continuous)
non-symmetrical alternative distributions, partially true
for (continuous) symmetrical alternatives, and true when the
alternative distribution tested is the (continuous) uniform.

The problem implied by these conclusions is that
the applicability of the statistical tables generated is
limited. It is the author's conclusion that the tables are
useful when it has already been determined (or is highly
suspected) that the population from which the sample is drawn
is distributed symmetrically. Even with symmetrical
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disctributions, the tables are only useful for larger sample

sizes. The only distributions for which the power with the
modified statistics is substantially greater are the double
exponential, Student's t with three degrees of freedom, and
the uniform.

Another thing the analyst should consider before
using these new statistics is whether the significant losses
of power against non-symmetrical distributions are worth
trading for the much smaller increases in power against the
symmetrical distributions. It must be remembered that HA
(the alternative hypothesis) is that the sample is not from
a normal population. If he has no knowledge of the popula-
tion from which the sample is drawn, the analyst could
sacrifice substantial power by using these modified statistics.

Finally, the power study tables have been integrated
into Table XVI. The statistic which had the highest power,
for a given sample size and a«-level, have been listed oppo-
site the alternative distribution for which the power was
calculated. For instance, for the logistic distribution at
a = .20 and n = 40, the most powerful statistic of the six
is the Anderson-Darling, calculated without reflecting the
sample. Throughout Table XVI, an "S" in parentheses indicates
straightforward (unmodified) calculation of the statistic.

An "R"” in parentheses indicates calculation of the statistic
after reflection. The non-symmetrical distributions tested
are not included in the table because, for all sample sizes
and all oa-levels, the unmodified Anderson-Darling statistic
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TABLE XVI

The Statistics with Highest Power When Critical
Values for the Normal Are Tested Using Various
, Symmetrical Alternative Distributions

; Distribution a-level
- Tested n .20 .15 .10 .05 .01
Uniform 10 A-D(R) A-D(R) A-D(R) A-D(R) A-D(R)
25 1"t " 1A) " "
40 1t 1] Tt 1t (2]
60 1" 1" " 1" 1"t
4
Logistic 10 A-D(S) A-D(S) A-D(S) A-D(S)
25 11 1" 1] 1"
40 (2] 1 " "

60 A-D(R) A-D(R) A-D(R) A-D(R)

Student's t 10 A-D(S) A-D(S) A-D(S) A-D(9)

Exponential 25 -
40 A-D(R) A-D(R) A-D(R) A-D(R)
' 60 CVM(R) " " "

&

A S

(3 d.f) 25

40 | A-D(R) A-D(R) A-D(R) A-D(R)

60 1" (2] " 1"
- Cauchy 10 | A-D(S) A-D(S) A-D(S) A-D(S)
3 { 25 " " " 11"
oy 40 | CVM(R) A-D(R) A-D(R) A-D(R)
A H 60 — " 13 "
| Double 10 | A-D(S) A-D(S) CVM(S) A-D(S)
7' Q (1} 1" 17"

|

&
- L o

X
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is the most powerful for these distributions.

It should be noted that the evident predominance of
the Anderson-Darling statistic was the basis for not genera-
ting a critical value table for the modified Cramer-von Mises
statistic,.

Ancillary Research Issues. The author's conclusions

about the other issues tested are made apparent in the deci-
sions discussed in Chapter IV. As far as determination of
the "best'" plotting position to use with the bootstrap tech-
nique is concerned, the conclusion is that when large numbers
of statistics are to be plotted, it makes no difference which
of the three plotting positions is used.

The conclusion that 5000 (versus 150, 300, 500, and
1000) samples was the number of samples to use to generate

critical values is sufficiently explained in Chapter IV. i

Recommendations for Further Research

The power study done for this thesis is extensive
and the conclusions, thus, are based on rather thorough re- 1
search. The author sees no apparent reason to make further
studies of this new technique with the normal distribution.

However, the results of the power study when the

continuous uniform distribution is used are interesting. The

power increase that results is quite substantial. The powers
demonstrated are better than for any of the statistics tested
by Green and Hegazy (1976). Perhaps, if the technique of

reflection is applied to the same statistics to generate
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critical values for the continuous uniform, the resultant
powers for the uniform might be very high. This might, at
least, be the case when samples from symmetrical distribu-
tions are tested.

The only other suggestion concerns the number of
samples to use with the bootstrap technique. The decision
to use 5000 samples rather than investigate alternative
numbers between 1000 and 5000 samples was one of expedience.
Before the bootstrap technique is again used to find critical
3 values, numbers of samples greater than 1000 and less than

5000 should be examine *¢v consistency at the a = .01 level

sk o i o

of significance. Some szvings of computer resource may still

be possible.
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APPENDIX A
COMPAR

The computer code for comparing the median rank, the
modified step rank, and the average of the mean and mode

ranks as plotting positions is included in the following

three pages.
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APPENDIX B

Results of COMPAR

The results of program COMPAR are included in the
following six pages. These particular results are for when

there are 150 points to be plotted.
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APEFZNDIX C

Subroutines

41l subroutines written and used by thne aut.or are
included in this section. The purpose of each subroutine
is discussed in Cnapter I1I.

X F T T TSRS RZLIISIS LS Z SRS SRS LRSS R R R R d st b gl & h b g

SUERQUTIKE CVaLS(YLOWZEK,YUPPER,DLOWER,DUPPLR,YVALUE,DOUT)
RE&L M,2,7LOWX&%,DLOWZR,YUrFik,LUFZER,YVaLUZ,DCUT 1
M = (YUPFER ~ YLOW:R)/(LUZF=R - DLOWZR) ,
E = YLOWER - (& * DLOWER)
DCUT = (YVaALUE - B) / M
END
I T TR TERLTTILE LSRRI SRR ELT LSS SRS RS RS L LS R a2 2 L X 8 &%

SUEROUTINE LILDIF (s,F,DIF)

Xxal  F(*),DIF(*)
INTEGER  I,N
= 1

DO 100 I o N
DIF&I) = F(I) -(XZAL(I)/REAL(N))
DIF(I+N) = 7(I) - ((REaL(I) - 1.0;/i)
100 CONTINUE

IND
R T T 2 T T R R L T g S e S R T2

SUBRCUTINE DSTAT(i,DIP?,XDIP)

INTEGER I,k
REAL XCIF,DIFF(*)
M1 = 2 * M

i *
XDIF = 0.0
DO 100 I = 1,1

I WES(DIFF(1))

I .GE. XDIF{ ADIF = DIFF(I)
1CC CONZILUZE

END

R L L R Ty S Y T R e T T R LR LY

et e e e e .
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SUBRCUTIKE ANDaR(iv,U, WS UaK,CulaT1,CLUNT2)
;NT?QER \,Cbbﬂ;1 C Jc”Z J

KEaL U(*) ) SUK, LT, 2UHI 1, W530aR, Uid1,Ud
u UNT1 = 0
OUMT2 = 0
SUM = G.O
DO 100 J = 1,N
Ud = U(J)
IF (UJ .LE. 0.0) THEN
UJd = .G001
COULTT1 = COUNT1 + 1
ENDIT

UNJ1 = 1.0 = U(N=-J+1)
IF (UnJ1 .LE. 0.0) THEN
UNJ1 = .0CC1
COUNTZ = CCUNT2 + 1
ENDIF
LWUJ = LOG(UJ)
LNUNJ1 = LOG(UNJ1)
SUM = (((2.C*REAL(J))-1.0) * (LiUJ+L.iUxJd1)) + SUNM
CONTINUE
WSeUak = 0.0 = XEaL(N) - ((1.0/K.LaL(XN)) * SUN)
ZND

[T 2L LT TL LS L LS LSS 2 A2 RS LS iR RS Rl AR RS LS S S )

100

SUERCUTILE CVR(\ U,WS{UAR)

INTZGER J,N
REsL (*),SUM,WSQUAR,VnLUE
SUM = 0.0

DO 160 J = 1,
VelUZ: = ((2 O*huhL(J)) -1, C)/éd O*uunb N))
SUM = SUNM + ((U(J) = VaLUz) * (U(J) - VallZ))

CONTILUE

W3QUAR = (1.G/(12.0%2ZaL(N))) + SUM

END

W W Fe W H W W e I I I I e I I K I I K K KK I I I I I H I I I I I I H I R I I KKK KK N X

100

200

SUBRCUTINE DUBSAK(X,N)

ISTEGER I,

REAL X(*),XBaR

X3:R = 0.0

DO 100 I = 1,0
XEaR = XBak + X(I)

CCATILUE

XBAR = XBaR/N
DO 20C I = 1,N
X(N+I) = (2.0 * Xbax) -~ X(I)
CCNTIHUE
IND

LZ 2222222222 R SRR R s a R R Rttt XLy
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SUBROUTINE
I.TEGER I
kzal X
XSUN =
NMRATR
4 DC 100
= XSUM
: 100 CCLTILUE
XBAR = XSUM
DO 200 1
NMRATR
200 COuLTILUE
S = SIRT(HIR-TR/(N=1))
DO 300 I = 1,n
X(I) = (k(I) - XbrK)/S
300 CORTINUE
END

STPaR(X,N)

*J (xl

),XSUA,thR,S,NkRnTR
C.

(=4

[} HOO

n u \ O —
-
'—4.

S + X(I)

Yy
NERATR + ((X(I)=X2aR)*(X{I)=AEaR)) f

% 3 It K 96 I I I I I W I I I I K I I I e W I KK I H I I I I I K I I I K I I I K I KKK R R

SUZROUTINE XPOLaT(N,D)
INTEGER N,uMIN1T,LELUSH
FZAL ¥1,Y2,D(0:*),0LOWER,DUPELR,XC
Y1 = 0.5/N
Yz = 1.5/N
, DLOWER = D§1J
DUPFER = D
Call -VaLS(Y1,Y2,DLOW.R,DUPFER,C. 0,X0) _
IF (X0 .Gt. 0.0) THZHW L
D(o) = X0
ELSE
D(0) = 0.0
MNDI”
(ﬁ_JAL\u) - 1.5)/:
(I\;‘J“LL(L\) - O.s)/l
uxIN1 = ¥ =1
LLOWER = DéNMIV1)
LUZE:=R = D(X)
I s(y1,Y2,DLOWER,DUrzZR,1.0,X0)
: RELUSYT = N + 1
g ‘ D(NPLUSY

=X :
pf END

™ % 3 I I I I I I T I I K e I W R F I I W T K I I H I KW NI I K KR IH F I N W T NN
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SUZRCUDILE CVA.ULL(JJ C\IAJ.J8O,\41A.\.405:V'“J-‘3(J bVﬂa—‘J/,vVnL 9’-4)
I; L._..J.un I -Ii-lb1

32 T(0: %) 3 (078000) ,C0nE B0, CubEY0,CurEY5, Cur F o9,

+ Y79,D79,Y81,D81, DI”9O ‘59,Y91,L89,D91,LIF95,LIEéb

+ ¥94.Y96.594.D96.DI799.798.Y100,D58,L100,LI7€5,C0..285,

+ Y84,D84,286,386,CVALBS,CVnLEO,CVnL9O,CVAL35,CVAL99

O 100 I =1,

Y(I) ~(dEAL(I) - 0.5/ al()
100 COUNTILUE

¥(0) = u.C

NPLS1 = N + 1 4
Y(NELS1) = 1.0

CCFP80C = 10GL.O 1
CO:P85 = 10C0C.C
CUMPY0 = 10C0.C
. COrPY5 = 100G.0
- COMPYY = 1000.0
O 200 I = iFLS1,0,-1
k Ir EY'I; .LZ. 0.75) 40TO 300 1
L IF Y?I GT. C.T75 .auiD. Y(I) .LE. 0.80) T:==d
1 DIFS0 = .80 - ¥(I)
IF (DIF80 .LE. COLESBO) TEHELK
' CCOWPBC = TIFS80
3 179 = 1(I)
79 = Z(I)
¥81 = Y(I+1)
D81 = D(I+1)
EuLDIF
ELSEIF (¥(I) .GT. .80 ,akD. Y(I) .LE. .85) THEN
DIFES = .85 - I{(I)
IF (DIF85 .LE. CUEB5) THEN
COMPES = LIRSS

Y84 = ¥ (I)

D84 = D{I)

Y86 = Y(I+1 |

D86 = D(I+1) '
ZLIIF ;

ELSEIF (Y(I) .u%. 85 .alD. Y(I} «LE. .90) 9oz
DIFSO = .90 - Y(I)
IF (DIF90 .1Z. COwP90U; “EEN
CCrF90 = DIFSO
7c9 = Y(Ig

L&E9 = (I
Y91 = Y(I+1)
ﬂD91 = D(I+1)

[o 8]
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ELSEIF (:(I) o7 .90 eaiDe (I enie 95)HEEN
ZIF95 = .35 - i(I)
IP (LI¥95 .LE. CunePY5) “Hin
Cuu}BS = ulfvb
Ty4 = Yéx)
Y96 = Y(I+1)
D94 = L(I)
D96 = Dkl+1)
ZLLI’ ‘ \
LS ((I) .GZ. .95 WALD. Y(I) JLE. .99, ThEN

DIr99 = .99 - I(I)

IF (LIF99 -LL- CVAPJ ) :Elh
COMESY9 = TIFG9
Y98 = Y(I
Y1C0 = Y(I+1)
£98 = D(I)
D100 = D(I+1)
=hDIF
ZIDIF
200 C..TI.UE
3CC  CoiCILUE
IF (DIF&0 .q. 0.0) THEN
CVal80 = D79
TLSE
Canl CVaLS(Y79,Y&1,179,D81,.80,CVALE0)
EnLIF
I® (LiF85 .Z¢. 0.0) TLEN
CVal85 = D84
TLSE
CALL CValS(Y&4,Y56,084,D86,.85,CVALED)
ENDIF
I7 (DI“OC .2G. 0.0) TrREL
TL1SE
Call LValS(169,Y91,D89,791,.90,CValll)
ENLIF
IF (DIFS5 .Z&. 0.G) TEEN
CVal95 = 194
Z1SE ‘
Call CVaLS(Y94,Y96,D94,096,.95,CVal95)

=iTIF
I7 (TIF99 .EQ. 0.0) T:EN
CValY9 = DY8
LLSE
CaLl CValLS(7¢8,710GC,D9€,D10C,.99,CVAL99)

U

r
L
t
=,
[ 3
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aFrrEZLLIX D
COMLIL

This program was used to determine the znuLber of
sainples To use Ior the booctstrap tecnnique and to veiidate
- the logic used to find critical values oI tne un.odified
rolmogorov-Smirnov statistic.

KERHRAKI XA KA AR K AR RAKAEEAK AR A A AT AAA K ALK R A AR ARAK AR K T AR AN

PROGRaM COMLIL
I.TEGER 5aNSIZ,J,N,K,I,80cu81,n,k

REAL R(120) ,DIFFS(240),LI.5%,Y ,F,D81aT8(C:5004),
+ cv8G,Ccves,cves,cves

DOUELE PRECISIO. S-ED1
SEZD1 = 21478.DC

DC 400 & = 1,5

IF (~ .ZQ. 1; Sah8IZ = 153 5
IF (A .EQ. 2) SalkSIZ = 3C3
IF (& .EQ. 3) SadSIz = 5C3
I? éa .Zq. 4) SakisIz = 1003
IF (» .EQ. 5) SaiSIZ = 5003
DC 50C & = 10,30,10 ‘
b FRINT *, 'N = ',N,' asl SahSIZ = ',SanSIZ
- 20 "100 J = 1,Sar51Z
L Calyu GuNC(SZED1,1,4,u,k)
M =N
: Call ESTE&R(R,M)
; Call VSRTn(w,‘)
DO 2UO A =1,N
! R(h)
k. CALH ID*OR(Y,I)
b 1 %(K) =
%}i 2G0 CORTILUE
o CallL LILDIF(i,K,DIFFS)
i Call DSTAT (P,LIF-S,&ILSL)
DSTATS(J) = LILST

{ 100 CUubTiiUE
, ISTaTS(0) = G.0
SMFPLS1 = SarSIZ + 1
CALL VSKTa(DSTUaTS,SiFLS1)
CalL XrOgn;(&AquZ DSTATS)
\ Call CVaLUE (DSTAES,CVSD,CVD“,CV9C,CV95,CV99,SAESIZ)
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ERIGT *, '70K ',5ab8Ii,' D-5T~sISCICS oT § = ',N
ERINT *, 'CVal8C = ', CV8U
FRI.T *, 'CVsLl85 = ', CV85
PRILT *, 'CVal90 = ', CV90
PRIAT *, 'CVaLlG5 = ', CVO95 j
PRINT *, 'CVALY9 = ', CVY9 1
FRIND * |
FRINT * i
5C0 CO..TILUE ‘
4CC CCKTILKUE
END




AFFELCIX E

TsZLE2

This program is typical of the programs used to
obtain critical vaiues oI tne statistics. This perticular
example is used to find critical values Ior Tne anderson-
Dariing statistic at sample size, n = 40.

% I I ¥ I I K I KK I I H I IR I W WA KK H KWK NN I K I KK KKK KR

PROGRAM TAELE2
INTEGER SavSIZ,J,i,K,SHrLS1,M,CuT1,CHT2,

+ COUNT1,COUNT2 ‘
R=al K(120),Y,F,WSQUak(0:5004) ,WSGRD,
+ cv8c,Cves,Cv90,Cva5,CV99

DCUBLE rRECISIOn SXED1
SEEL1 = 46985793%6.D0
C

COULTT =
CCUNT2 = 0
SakSIZ = 5000

N = 40
FRINT *, 'N = ',4,' AND Sal8IZ = !',SakSIZ
DC 10C J = 1,SaMSIZ
Call GGLO(SEED1,1,i,N,K)
CALL DUESaM(K,i)
M= 2 %N
CALL ESTPaR(R,M)
CALL VSRTa(R,M)
DO 200 K = 1,M
Y = R(Kk)
CALL MDNOR(Y,P)
R(K) = P
CCNTINUE
CaLL auDsaR(¥,k,WSQRD,CHT1,CHT2)
WSQUAR(J) = WSQRD

CCUNT1 = COUnT1 + CuT1
COUNT2 = COuhT2 + CiLT2
CCHNYINUE

87




ek AT Y

W3QUaR(0) = v.0
SI.FLS1 = SaFSIZ + 1
CALL VSRTa(WSQUAR,SIPLS1)
CAll XTCLaAT(SainSIZ,Wsilarn)
CALL CVaLUZ(WSLUxK,CV80,CV85,CV90L,CV95,0V99,54ik518)
TRINUT*,'FOR ',SaMSIZ,' AdDERSON=DARLING STTISTICS aT li=',d

PRIKT *, 'CV-.LEC = ', CV8U
PRINT *, 'CVAL8S = ',(CV85
E | PRIKT *, 'CVal9C = ', CVS0
PRIsT %, 'CVal895 = ', CV95
FRIKT *, 'CValS9 = ', CVY9
PRIWT *
3 PRINT *, 'CUUNT1 = ',COUNTH
PRIGT *, 'COULTZ2 = ',COUnT2
END
i
2
=
!
.}
i
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AFPF_NDIX F
POWEIRS
Tnis program is typrical o tunose used in the power
study. This particular one is used to find powers for all
six statistics when tested against 5000 saiples of size,
n = 10, Irom the Cauchy distribution.
¥ 3 I I I I AN I I I He I T W I I W I I e T I I I F K I I I T I K I I I I I N WK *

PROGR. ¥ FOWERS
ILT=ER MNR,J,K,L,k,COURT(4),POWER(30),CNT1,CNT2,1

REAL wk(360),R(120),5(120),7(120) ,LIP=S(240),
+ Y,P,LILI%S,LILIE2 ,aklaR1,4k0aR2,CRVE,
+ CRV¥.2,PWR(30)

DCUELE FRECISICN SEED1
SEED1 = 1095785.DC
DO 600 I = 1,30
FOWZIR(I)
60C CONTILUE
IC 800 1I =
COUKT(I)
80C CCXTILUE
SR = 1C
DO 10C J = 1,500GC
Call GGCAYéSEED1,NR,WK,R)
Call VSRTA(R,NR) -
DO 200 K = 1,NR

S(K) RéK‘
T(k R Kﬁ
2G0 CONTILUE
Call EST;aRés,NR‘
Caul DUBSAN T,Naf
¥ = 2 * NR
Call ESTPAR(T,Mg
CalL VSRTAES,NR
CALL VSRTa(T,N)
D0 300 L = 1,NM
Y = I(L)
CalL NI.Ox(Y,P)
(L) =P
300 CCNTINUE
DO 400 L = 1,kR
Y = s(L)
Call iDUOR(Y,F)
S(L) = P
4G0 COJTINUE
CALL LILDIF(LR,S,DIZFS)
Call DscaméuR,DIFfs,LILIzs)
Call ANDAR(NR,S,ANDAR1,CXT1,CuT2)

=0
=0

Wnpx
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CeULT(1) + CLT1
CCUNT(2) COUNT(2) + CWI2

Call CVN(WR,S,CRVM)

Call LILDIT(i.%,DIFFS)

CALL DanLéP DI“S yuILIE2)

Caill A.DaR A,T,hanﬁz CHT1,CnT2)
CCme23) = cuUAT(Bi + CNT1

CCULT(1)

CCUNT(4) = CCUNT(4) + CiT2

CALL cvm(x,m,cavmz

IF (LILIES .GT. .21595) THEN
TOW=R(1) = FOWER(1) + 1

ENDIF

I7 (LILIES .GT. .22547) THEN
POwdR(z) Pow;R(z) + 1

INDIF

IF (LILIES .GT. .23857) TEEN
POW= R(3) = POWLR(B) T

LADI®

I (LILIES .GT. .25841) THzXN
FCWER(4) = FOW-R(4) + 1

LJNAJIF
IF (LILIZS .GT. .20564) TEEN
+

POWER(5) = PCw:R(S) 1
ENDIF
IF ( LILIE2 .G%. .13452)THEN
POWER(6) = ECWER(6) + 1
EADIT

IF (LILIE2 .GT. .14278) TEL
POWEK(7) = OWZR(T) +
ENDIT
IF (LILIE2 .uT. .15309) THEL
TOWER(8) = POWER(8) + 1
ZNDIF
IF (LILIE2 .G7. .16858) TEHEN
POWER(9) = POW=R(9) + 1
ZLIIF
17 (LILIE2 .GT. .20295) TEEN
FOWER(1C) = POwW:x(10) +
“ADIF
rOw“R(11) = FOWZR(11) + 1

—-—

ZLZI?
IF (ANDaR1 .GT. .51170) THEN
POWER(12) = FOWZR(12) + 1
ZADIF
Iﬂ (al.DaR1 .GT. .58377) TEEN
erER(13) = FOWER(13) + 1
ENDIF
IF (aiDaR1 .uT. .66950) THEN
POWZR(14) = POWZR(14) + 1

ENDIF
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NS4

I (adlaR1 .GT. 90866, Thlin
POWER(15) = rOWER(15) + 1
ZLDIF
IZ? (~4DaR2 .GT. .44203) THEH
FOWER(1€) = POWER(16) + 1
INDIF
IF (adDiaR2 .GT. .50275, THEN
POWER(17) = POWZR(17) + 1
ENLIF
IF (44DaR2 .GT. .57780) THEN
FOWER(18) = POWER(18) + 1
INDIF
I (ANDAR2 .GT. .71245) TEZK
POWER(19) = rOWZR(19) + 1
ELTIF
IF (4LDaR2 .GT. 1.05927) TR
FCWER(20) = POWER(20) + 1
LNDIFP
IF (CRVM .GT. .087204) TEEN
rOWZR(22) = FCW3k(22) +
E.DIF
Ir (CRVM .G2, .G78210) THEu
POWZR(21) = YOWER(21) +
Z.DIF i
IF (CRVN .GT. .100425) THEW
POWER(23) = rOWER(23) +
ENDIT
IF (CRVEk .GT. .12058&83) TEEN
ECWEK(24) = FOWER(24) +
ZRDIF
IF (CRVN .G%. .170314) TEEN
\ PCWZIR(25) = POW=R(25) + 1
- INLIF
. IF(CRVN2 .GT, .071429) THEN
s rOWZr(26) = PCW:iR(26) + 1
' ENDIZ
IF (CRVN2 .GW. .081378) Taik
FOWER(27) = POWZR(27) + 1
ZHDIF
IF (CRVNMZ2.G.. .,096362) THEN
POWZR(28) = rOW=xR(28) + 1

|
{
l
!
k| E.DIF \
;1 IF (CRVE2 .G, .124018) THEN

]

-t

-—

-

-

FOWER(29) = POW:=&(29) + 1
“uDITF

1 I (CKVA2 .GT. .181580) THE.
¥ POW:K(30) = POWER(30) + 1
Z.DIF

100 CONTI.LUE
FRILT '(a)', "1
ERINT *

BRINT *




TRILT *,'aGalusT THE alUCaY JIVLnIML LOA

SRILD *0TET REGECTIUNS T N = ',KK,' nRE 45 Porwudis:'
| IHI.\- * .
. FRINT '(D7,8,717,4,127,a,737,4,547,4) ', ' .EC", 1. 65"
! + 'LyGt, .95, 1,99
- PrILT *, 'POR _ILIZFCAS: !
ERIAT $T6 \14,716,14,T26,14,7%6,14,746,14)",
; + POWER(I),I=1.5)
R ! PRILT *, 'FOR 1I2TEFCRS DOUSLED: !
3 *RIJT '(T6,I4,716,14,726,14,736,14,T46,14)",
} + (zOW=R(I),1=6.10)
- FRINT *, 'POR a.DEASOW-DrRLIKG: ! '
f TRILT '(7T6, 14,*10 14,726,14,736,14,746,14)",

+ (ruw_a(I) =11, 15)

FRINT *, 'POR AdDthOn-bbRtha DCUZLED: !
PRI.T ‘'(76,14,716,14,T726,14,73%6,14,746,14)",
+ (FCu. "5(1),1216,20)

FRINT * FOR CnnN R-Vuh mISES: !

ERILT '(L6 14,716,14,720,14,736,14,745,14)"',
+ (rOw-R(I),I=21,25)

PRINT *, '?OR CrRaMER-VON [.ISES DCUELED: !

N

?
rkI4T '(76,14,716,14,726,14,735,14,746,14)"',
+ g}ou,R(I),1=26,3o)
ZRIAT *
FRINT *
PRIND *

o0 500 1I = 1,30
EWR(I) = BOWZR(I)/5000.0
5C0 COKRTINUE
ZRILT *, 'THE yOWERS AT N = ',iR,' ARE AS FCLLOWS: !
rRI.T *, '¥CR LILIEFCRS: !
IRINT '{75,76.4,715,76.4,T25,F6.4,135,76.4,T45,76.4) ",
(EWR (I),I 1,5)

'70R ;IquFURS DCUEBLZD: ! )
T5,%7¢.4,T15,76.4,725,F6.4,135,F0.4,745,75.4) ",
PWR(I),I=6,10)
'FCn ANLERSUL. -uMquG. ' . ]

75, 4,*1;, 76,4,T725,F6.4,735,756.4,745,56.4) ', |
(I),I=11 15)
CR AuunnSOn-u:nhIhu DUUBLED: !
F6.4,715,76.4,725,r5.4,T35,76.4,745,F0.4) "',
(I),I=16,20)
OR CRaAMER-VON MISES: !
F6.4 T15,F6.4, T25,76.4,735,F€.4,T45,76.,4) "
(I),I 21,25)
0
(

+
FRILT *,
FRIGT '{

+ (
FRINT *,
PRAIAT '(

+ (
BRILD *
PRILT '$T5

+ ki

]
(
(

I

oy g

5 LRnrnn—VuN MISES LLUBLED: !
6.4,715,F6.4,725,76.4,7%5,F6.4,T45,76.4) "',
I1),I=26,30)
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£RI.T 'ColuT1

*, = (1 )
FRINT *, 'CLULTZ2 = ! ,C\JU;\'TEZ)
FRINT *, 'CCULT3 = ',CUUNT 3)
FPRINT *, 'COUHT4 = !',CCULT (4) i

END

F,
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